Comparison of Heuristic Criteria for Fuzzy Rule Selection in Classification Problems
نویسندگان
چکیده
منابع مشابه
Comparison of Heuristic Criteria for Fuzzy Rule Selection in Classification Problems
This paper compares heuristic criteria used for extracting a pre-specified number of fuzzy classification rules from numerical data. We examine the performance of each heuristic criterion through computational experiments on well-known test problems. Experimental results show that better results are obtained from composite criteria of confidence and support measures than their individual use. I...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملnew criteria for rule selection in fuzzy learning classifier systems
designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing fuzzy learning classifier (flc) systems. conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. in thispaper new entities namely precision and recall from the field of information retrieval (ir)systems is adapted as alternative...
متن کاملGenetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
The inductive learning of a fuzzy rule-based classi®cation system (FRBCS) is made dicult by the presence of a large number of features that increases the dimensionality of the problem being solved. The diculty comes from the exponential growth of the fuzzy rule search space with the increase in the number of features considered in the learning process. In this work, we present a genetic featu...
متن کاملFuzzy Rule Selection By Data Mining Criteria And Genetic Algorithms
This paper shows how a small number of fuzzy rules can be selected for designing interpretable fuzzy rule-based classification systems. Our approach consists of two phases: candidate rule generation by data mining criteria and rule selection by genetic algorithms. First a large number of candidate rules are generated and prescreened using two rule evaluation criteria in data mining. Next a smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Optimization and Decision Making
سال: 2004
ISSN: 1568-4539
DOI: 10.1023/b:fodm.0000022041.98349.12